Package: segclust2d 0.3.3
Remi Patin
segclust2d: Bivariate Segmentation/Clustering Methods and Tools
Provides two methods for segmentation and joint segmentation/clustering of bivariate time-series. Originally intended for ecological segmentation (home-range and behavioural modes) but easily applied on other series, the package also provides tools for analysing outputs from R packages 'moveHMM' and 'marcher'. The segmentation method is a bivariate extension of Lavielle's method available in 'adehabitatLT' (Lavielle, 1999 <doi:10.1016/S0304-4149(99)00023-X> and 2005 <doi:10.1016/j.sigpro.2005.01.012>). This method rely on dynamic programming for efficient segmentation. The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm. This is an extension of Picard et al (2007) <doi:10.1111/j.1541-0420.2006.00729.x> method (formerly available in 'cghseg' package) to the bivariate case. The method is fully described in Patin et al (2018) <doi:10.1101/444794>.
Authors:
segclust2d_0.3.3.tar.gz
segclust2d_0.3.3.zip(r-4.5)segclust2d_0.3.3.zip(r-4.4)segclust2d_0.3.3.zip(r-4.3)
segclust2d_0.3.3.tgz(r-4.4-x86_64)segclust2d_0.3.3.tgz(r-4.4-arm64)segclust2d_0.3.3.tgz(r-4.3-x86_64)segclust2d_0.3.3.tgz(r-4.3-arm64)
segclust2d_0.3.3.tar.gz(r-4.5-noble)segclust2d_0.3.3.tar.gz(r-4.4-noble)
segclust2d_0.3.3.tgz(r-4.4-emscripten)segclust2d_0.3.3.tgz(r-4.3-emscripten)
segclust2d.pdf |segclust2d.html✨
segclust2d/json (API)
NEWS
# Install 'segclust2d' in R: |
install.packages('segclust2d', repos = c('https://rpatin.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/rpatin/segclust2d/issues
- simulmode - Simulations of behavioural mode
- simulshift - Simulations of home-range shift
Last updated 7 months agofrom:129179706d. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win-x86_64 | OK | Nov 20 2024 |
R-4.5-linux-x86_64 | OK | Nov 20 2024 |
R-4.4-win-x86_64 | OK | Nov 20 2024 |
R-4.4-mac-x86_64 | OK | Nov 20 2024 |
R-4.4-mac-aarch64 | OK | Nov 20 2024 |
R-4.3-win-x86_64 | OK | Nov 20 2024 |
R-4.3-mac-x86_64 | OK | Nov 20 2024 |
R-4.3-mac-aarch64 | OK | Nov 20 2024 |
Exports:add_covariatesangular_speedaugmentbisig_plotcalc_BICcalc_distcalc_speedcalc_stat_statescheck_repetitionchoose_kmaxchooseseg_lavielleDynProg_algo_cppfind_mu_sdget_likelihoodlikelihoodmap_segmmatrixRuptplot_BICplot_likelihoodplot_segmplot_statesprep_segm_HMMprep_segm_shiftfitprepare_HMMprepare_shiftfitrelabel_statessegclustsegmapsegmap_listsegmentsegmentationsegmentation_internalspatial_anglestat_segmstateplotstatestest_data
Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshape2rlangscalesstringistringrtibbletidyselectutf8vctrsviridisLitewithrzoo
1 - Preparing data for Segmentation/Clustering with segclust2d
Rendered fromv01_preparing_data.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2021-09-22
Started: 2021-09-20
2 - Running Segmentation/Clustering with segclust2d
Rendered fromv02_run_segclust2d.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2022-09-06
Started: 2021-09-20
3 - Exploring Outputs from segclust2d
Rendered fromv03_explore_outputs.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2021-09-23
Started: 2021-09-20